FOTOVOLTAIK .CZ Obnovitelné zdroje energie
Customer:
Product name: <u>Cylindrical lithium-ion Iron Phosphate</u> <u>battery</u>
Model No.: <u>HW 38120S</u>
Specifications: 10000mAh/3.2V
Add.: Tai Hu Road, Changxing Eco.&Tech. Development Zone, Changxing County, Zhejiang Province, China

1. specifications:

NO.	ITEM		Specifications
3-1	Nominal Capacity:		10000mAh
3-2	Rated voltage		3.2V
3-3	Energy density (Wh/kg)		105
3-4	Internal Resistance		$\leq 6 \mathrm{m} \Omega$
3-5	Charge (CC-CV)		Charged with constant current to 3.65v and then charged with constant voltage to
3-6	Charge (float)		≤3.6V
3-7	Max. charging current		2C (20A)
3-8	Max. charging voltage		3.65±0.05V
3-9	Standard charging current		0.5C, 5A ×2hours
3-10	Max. continuous discharging current		3C (30A)
3-9	Max.pulse discharging current		10C (100A)
	Standard discharging current		1C(10A)
3-10	Terminal discharged voltage		2.5-2.0V
	Self discharge rate (monthly)		5%
3-11	Dimensions	Diameter	38±1mm
		Height	146 ± 1 mm
3-12	Weight		Approx.330g
3 13	Working temperature	Charging	0~45℃
3-13		Discharging	-20~65°C
3-14	Storage	In one month	-20~45℃
	temperature	In six months	-20~35°C

*The battery shall be in the state of half –fully charged or with the voltage of 3.2~3.3V during storage and transportations.

The cycle life testing curve and discharging and charging curve at 1C of 38120 10Ah cell(x line means the cycles, the Y line means the capacity)

X line means the time in minutes, Left Y line means Voltage, Right Y line means the capacity.

Discharging curve at 1C,2C and 3C

Discharging curve at 5C

Discharging curve at 10C

2.Test conditions

4.1 The experiments and survey should be on the nominal temperature of $20 \pm 5^{\circ}$ C, and the nominal humidity should be 65 ± 20 %.

Standard charging: first charged by constant current of 0.5C, then by contant voltage up to 3.65v, and when the current falls down to 200mA, then stop the charging.

Standard discharging: discharging on constant current of 5000mA until the voltage falls down to 2.0V.

3. Testings

5.1 Appearance

The surface should be clean, no mechanical damage, adherent point should be no rust, and there should be necessary marks on the cells.

Item	Test program	
3.2.10pen-circuit voltage	After standard charging ,then measure the open-circuit	≥3.3V
	voltage in one hour.	
3.2.2 Nominal capacity	Discharging by constant current of 0.5C in one hour	Capacity≥10Ah
	until the voltage falls down to 2.0V	
3.2.3 Cycle life	At the temperature of $25\pm5^{\circ}$ C, charged by constant	≥2000times
	current of 0.5C until the voltage comes up to 3.65V, then	
	charged by constant voltage of 3.65v until the current	
	falls down to \leq 200mA, then kept aside for 0.5-1hour,	

5.2 Characterisitcs

	then discharged of 0.5C until the voltage falls down to	
	2.0V, then kept aside for another 0.5-1hour, then stepped	
	into the next cycle. If the capacity falls down	
	\leq 7000mAh for two continuous cycles, then it is	
	considered as dead	
3.2.4 Reserve ability of	After standard charging and storaged at $25 \pm 5^{\circ}$ C for	Capacity≥9Ah
the capacity	28 days, then discharging at 0.5C to the voltage of 2.0V, the	
	reserved capacity is $\geq 90\%$ nominal capacity.	
3.2.5 High Temperature	After standard charging and storaged at $60\pm2^{\circ}$ for 4	Capacity≥9Ah
performances	hours, then discharging at 0.5C to voltage of 2.0V, the reserved	
	capacity is $\geq 90\%$ nominal capacity.	
3.2.6 Low temperature	After standard charging and storage at $-10\pm2^{\circ}$ C for 4	Capacity≥6Ah
performances	hours, then discharging at 0.5C to the voltage of 2.0V, the	
	reserved capacity $\geq 60\%$ nominal capacity.	
3.2.7 Extrusion	Put the battery into the two planes of the extrusion	The battery must
	equipment, boost pressure to 13KN, keep the pressure for 1	be no fire and no
	min. the vertical axis should parallels to the horizontal	explosion.
	plane of the extrusion equipment, be vertical to the	
	direction of extrusion, each battery only accept one test.	
3.2.8 Thernal shock	After putting the battery into the incubator, the	The battery
	temperature should be increased continuously at the rate	must be no fire,
	of 5°C±2°C/min to 130°C and kept for 30 min, then take	no explosion.
	out the battery, resume to the room temperature.	
3.2.9Overcharged	The test is made at temperature of $20^{\circ}C\pm5^{\circ}C$. The	The battery
	battery should be discharged at I ₅ A until the voltage is	must be no fire
	2.0V, put the battery into ventilation cabinet, connecting	and no explosion
	the anode and cathode to the DC power supply. Change	
	the output current of power supply to 15I ₅ A, The voltage	
	should not be lower than 10V, charging for 7 h or and the	
	voltage stays the same, until the current falls down to 0.	
3.2.10Forced discharge	The test is made at temperature of 20°C±5°C. Discharged	The battery must
	at I ₅ A until the voltage falls down to 2.0V, then reverse	be no fire and no
	charged at 5I ₅ A current for 90 min.	explosion.
3.2.11 Short circuit	After standard charging fully, put a battery which is	The battery must
	connected with thermocouple (The essential resistance of the	be no fire and no
	circuit should be less than $50m\Omega$), short circuit for the anode	explosion.
	and cathode, monitoring the temperature of the battery,	
	when the battery temperature falls with a range of	
	10° C, then stop the testing.	
3.2.12 Acupuncture	The test is required to operating at the temperature of	The battery must
	$20^{\circ}C\pm5^{\circ}C$. Standard charged to the voltage of 3.65V, Put the battery in	be no fire and no
	which is connected with thermocouple into the	explosion.
	ventilation cabinet, pricked with a diameter-3mm	
	stainless steel pricker throughout the centre of the of the	

	battery at most surface in 20mm/s~40mm/s speed, and keep 1min.	
3.2.13 Heavy Impact	Put the battery on the floor, put a Φ 15.8mm Steel column into center of the battery, the vertical axis of the Steel column should be parallel to the floor, then let the 9.1kg's heavy object fall on to the steel column from a height of 610mm.	The battery must be no fire and no explosion.
3.2.14 Vibaration	After standard charging fully, put the battery on the vibaration table of vibarating frequency of 10Hz-30Hz, and continuously vibarated from X,Y,Z three directions with 10Hz-50Hz for 30mintues, and the speed is loct/min.	There is no damage of the appearance and no smoking, no penetration, no explode, and the voltage is no less than 3.2V
3.2.15Collision	After vibaration testings, fix the battery from X,Y,Z three perpendicularity and colliding pulsely at 100m/s2, and 40~80times per min, and each pulse collisions keeps 16ms and 1000 ± 10 times.	There is no damage of the appearance and no smoking, no penetration, no explode, and the voltage is no less than 3.2V
3.2.16 Free fall drop	After standard charging fully, let the battery fall from a height of1m from X,Y,Z six directions accordingly to the hard wood with thickness of 18-20mm on the cement floor, each for each direction, and then discharged at 1C until the voltage is 2V, then make they charging and discharging cycles no less than 3cycles.	No fire, no explode, and the discharging time is no less than 51minutes

4. Matters need attention.

4.1 Don't put the battery near the origin of heat, such as fire, heater etc.

4.2 Please use the matched charger to charge the battery.

4.3 Don't convert the anode and cathode.

4.4 There are safety features in the battery, in order to keep safe, do not dissect or change the structure of the battery.

4.5 It is forbidden to connect the anode and cathode directly with metal.

4.6 It is forbidden to pound, throw , trample the batteries.

4.7 It is forbidden to put the battery into the water, or in the moisture place.

4.8 If the battery are storaged without being used for 6 months, we recommend the batteries fully charged before using them.

5.Shelf life

7.1 The shelf life is 24 months since the production time.

7.2 Our company is not responsible for quality inferiority or accidents caused by abuse operating or using which are not compliant with the specifications and instrutions.

6.Transportation

During the transportation, preventing the strenuous vibration, impact, exposed to the sun and rain, and keep the battery on a state of half-charged.